Atmospheric characterization of sub-Neptunes with ELT-HIRES

Benjamin Charnay¹, Doriann Blain¹, Bruno Bézard¹, Jérémy Leconte² & Martin Turbet³

¹LESIA, Observatoire de Paris ²LAB, Bordeaux ³Geneva Observatory

e-PYTHEAS

exo-PlanetarY high-Temperature Hydrocarbon by Emission and Absorptio Spectroscop

Atmospheric composition of sub-Neptunes *What is the nature of sub-Neptunes?*

Atmospheric characterisation is required to constraint the nature of sub-Neptunes

Atmospheric composition of sub-Neptunes *Metallicity*

High metallicity expected for sub-Neptunes (≈100-400xsolar)

Lesson from transit observations

Low-mass planets have relatively flat transit spectra

<u>GJ 1214b</u>

→ high mean molecular weight (i.e. high metallicity) + clouds/hazes

Discovery of water vapour on K2-18b

Mass = 8.63 M_{\oplus} Radius = 2.6 R_{\oplus} Irradiation = 1368 W/m^2 (1361 W/m² for the Earth) Orbital period = 33 days

A temperate sub-Neptune, with water vapour and potentially water clouds

Tsiaras et al. (2019)

Atmospheric composition

Exo-REM: 1D self-consistent model with non-equilibrium chemistry and clouds (Baudino et al. 2017, 2017, Charnay et al. 2018, Blain et al. 2020)

CH₄ should be the dominant absorbant due to its numerous weak lines A larger spectral range or HR spectroscopy is required to distinguish CH4 from H2O

Atmospheric composition

Transit depth ratio

Exo-REM: 1D self-consistent model with non-equilibrium chemistry and clouds (Baudino et al. 2017, 2017, Charnay et al. 2018, Blain et al. 2020)

Metallicity=fraction of heavy elements

1D self-consistent modelling suggests:

- HST transit spectrum dominated by CH_4 for T_{eff} < 600 K
- 50-400×solar metallicity compatible with the Solar System trend

Cloud distribution

Simulations of water clouds on K2-18b with the 3D LMD Generic GCM (Charnay et al. in rev)

3D cloud modelling suggests:

- Day to night-side circulation (upper winds ~100 m/s)
- Inhomogenous cloud distribution
- Possible asymmetric limb cloudiness
- Variability of transit spectra in spectral windows (i.e. in visible spectral range)

The golden age of sub-Neptunes

Variation of transit depth:

$$\Delta \delta_{tra} pprox 2N_H rac{R_p H}{{R_\star}^2}$$
; $H = rac{RT}{Mg}$; Number of scale heights: $N_H pprox 5-7$

 \rightarrow The SNR is ~10 higher for a sub-Neptune (R_p=2.5R_{\oplus}, met=100×sol) than for a rocky planet (R_p=1R_{\oplus}, compo: N₂/CO₂/H₂O)

Scientific questions:

- Nature of sub-Neptunes (H₂-dominated or H₂O-dominated)
- Atmospheric composition (metallicity and C/O ratio) and chemistry
- Atmospheric circulation
- Upper atmosphere and atmospheric escape
- Photochemical hazes or clouds
- Water clouds on temperate sub-Neptunes (implication for the climate of rocky planets)

Large spectral range

- Covering multiple molecular bands
- Clouds optically thinner in infrared

High spectral resolution

- Detecting/resolving individual lines
- HR spectroscopy can probe above clouds

9

The golden age of sub-Neptunes

Nortmann et al. 2018

Dectecting/resolving individual lines

Ttransmission spectrum of HAT-P-11b (He I triplet)

HR spectroscopy can probe above clouds

10

Equivalent opaque radius (R_p)

10835

The golden age of sub-Neptunes

Gandhi et al. 2020

High spectral resolution

Detecting/resolving individual lines
HR spectroscopy can probe above clouds

11

Line-by-line calculations

3100

HR spectroscopy requires accurate line lists:

- ANR e-Pytheas for hydrocarbon line list
 - (PI: A. Coustenis)
- TheoReTS instead of ExoMol for CH₄

Estimations of cross-correlation for K2-18b with ELT-HIRES assuming photon-noise limit and 30% instrumental throughput

Take-home messages

- With future telescopes (JWST, ELTs, ARIEL) the next decade will be the golden age of sub-Neptunes
- > Sub-Neptunes are a fundamental step before habitable rocky planets

- Atmospheric modelling of K2-18b suggests that CH₄ is the dominant absorber with important implications for other temperate sub-Neptunes
- 3D modelling of K2-18b suggests a circulation from day to night-side with inhomogeneous clouds and transit spectral variability
- > A large spectral range or a high spectral resolution is required to characterize sub-Neptunes (i.e. CH₄ VS H₂O)
- > ELT-HIRES could constrain their atmospheric composition, escape, photochemistry and clouds/hazes