Contribution of HIRES to cometary science

Philippe Rousselot UTINAM Institute/OSU THETA, Besançon

> Emmanuel Jehin STAR Institute, Univ. of Liège

Back to basics for comets...

Coma ~ 10 000 – 100 000 km

Nucleus ~ 10 km

Dust tail ~ a few millions km Plasma tail ~ a few millions km

Chemical composition known by spectroscopic investigation with groundbased facilities / space mission and in situ analysis.

The spectrum observed in a cometary coma includes two elements :

- \rightarrow a **continuum** coming from the solar lights scattered by the dust grains (Mie scattering that creates a reddening)
- \rightarrow some emission lines created by the fluorescence mechanism of chemical species in the coma.

Parent molecules visible with ground based facilities (% / eau):				
water	H ₂ O	100	IR, radio	
carbon monoxide	CO	0,2-23	radio, IR, UV	
carbon dioxide	CO_2	2.5-30	IK	
Hydrocarbons (≈ 2%)				
methane	CH ₄	0.12-1.5	IR	
acetylene	C_2H_2	0.04-1.5	IR	
ethane	C ₂ H ₆	0.14-2	IR	
CHO-bearing molecules (≈ 4%) :				
methanol	CH ₃ OH	0.6-6.2	radio, IR	
formaldehyde	H ₂ CO	0.13-1.4	radio, IR	
ethylene glycol	HOCH ₂ CH ₂ OH	0.07-0.35	radio	
formic acid	НСООН	0.028-0.18	radio	
ethanal	CH ₃ CHO	0.047-0.08	radio	
methyl formate	HCOOCH ₃	0.07-0.08	radio	
ethanol	C ₂ H ₅ OH	0.12	radio	
glycolaldehyde	CH ₂ OHCHO	0.016	radio	
Nitrogen-bearing molecules (≈ 1%) :				
ammonia	NH ₃	0.3-0.7	radio, IR +	F
hydrogen cyanide	HCN	0.085-0.25	radio, IR 🛛 🖡	3
hydrogen isocyanide	HNC	0.002-0.035	radio (E
acetonitrile	CH ₃ CN	0.008-0.035	radio	V
methyl cyanide	HC ₃ N	0.002-0.068	radio I	N O
isocyanic acid	HNCO	0.009-0.08	radio (5
formamide	NH ₂ CHO	0.008-0.021	radio	S
Sulfur-bearing molecules (≈ 1,5	5 %) :			⊦
hydrogen sulfide	H ₂ S	0.13-1.5	radio	
sulfur monoxide	SO	0.04-0.3	radio	
sulfur dioxide	SO ₂	0.2	radio	
carbonyl sulfide	OCS	0.03-0.4	radio, IR	
		0.2	UV, radio	
thioformaldehyde	H ₂ CS	0.009-0.09	radio	
disultur	S_2	0.001-0.25	UV	

+ dissociation products / ions (ex : CN, C₂, C₃, NH₂, NH, CH, CO⁺, N₂⁺...) + isotopologs + Na, Ca⁺

HIRES:

 \rightarrow Wavelength range (0.35-1.8 μ m) adapted mainly to dissociation products or ions (CN, C₂, C₃, NH₂, NH, CH, CO⁺, N₂⁺...).

 \rightarrow Measurement of absolute and relative abundancies, even for low abundancies (e.g N₂⁺ for most of the comets).

 \rightarrow Measurement of **isotopic ratios** in dissociation products.

Detection of species with low abundance:

 \rightarrow Important for interstellar comets coming inside the solar system: case of 2I/ Borisov, 2 such comets expected to be detected / year with LSST, most of them will probably be faint and with a short period of visibility. Unique opportunity to have information about the composition of other planetary systems.

 \rightarrow Important for Main Belt Comets to detect gazeous species and infer their composition.

 \rightarrow Important for **distant comets**: source of activity ?

Isotopic ratios:

The following isotopic ratios have now been measured in comets: D/H, 12C/13C, 14N/15N, 16O/18O,16O/17O, 32S/34S, 32S/33S

Among them ¹²C/¹³C, ¹⁴N/¹⁵N, ¹⁶O/¹⁸O can be measured in radicals having emission lines in the spectral range covered by HIRES:

 $\begin{array}{l} NH_2 \rightarrow {}^{14}N/{}^{15}N \\ C_2 \rightarrow {}^{12}C/{}^{13}C \\ CN \rightarrow {}^{12}C/{}^{13}C \text{ and } {}^{14}N/{}^{15}N \\ N_2^+ \rightarrow {}^{14}N/{}^{15}N \\ CO^+ \rightarrow {}^{12}C/{}^{13}C \text{ and } {}^{16}O/{}^{18}O \end{array}$

Case of ¹⁴N/¹⁵N:

 \rightarrow Terrestrial value = 272

 \rightarrow Measurements done in comets with :

- \rightarrow **HCN** (sub-mm range)
- \rightarrow CN (388 nm with UVES at VLT)
- \rightarrow NH₂ (570 nm with UVES at VLT)

\rightarrow Attempts to measure it with N₂⁺ in comet C/2016 R2 with UVES at VLT.

 \rightarrow Rosetta (ROSINA in situ mass spectrometer) in comet 67P: NH₃ and N₂ (results announced for paper in preparation, not so obvious to measure because of some other species with similar mass).

 \rightarrow **Dust grains** with **Stardust**.

 \rightarrow At least **3 isotopic reservoirs** in the solar system:

 \rightarrow **PSN poor** in ¹⁵N (¹⁴N/¹⁵N=441)

 \rightarrow inner solar system (planets + bulk meteorites) enriched by a factor of 1.6 / PSN ($^{14}N/^{15}N=272)$

→ cometary ices enriched by a factor of 3 / PSN ($^{14}N/^{15}N\sim140$) → ratios ≈ consistent with an increase of ^{15}N with heliocentric distance (qualitative agreement with D/H)

What HIRES could do:

 \rightarrow Gain for S/N ~ 5 / VLT (UVES)

Example with ¹³CO+ emission lines simulated from an UVES spectrum of comet C/2016 R2:

 \rightarrow Measurement of ¹⁴N/¹⁵N in N₂⁺ (not enough S/N with UVES even with C/2016 R2)

 \rightarrow Reduce error bars to detect ¹⁴N/¹⁵N variations in NH₂ or CN with the type of comet (not yet detected but large errorbars).

 \rightarrow Measurements of isotopic ratios in interstellar comets (2I/Borisov with NH₂ emission lines)

... and, maybe, measurement of relative abundances in exocomets:

→ Absorption lines (Ca II and Na I) due to exocomets detected in β Pic and more than 20 other stars.

 \rightarrow Ca II K absorption lines observed at 393.4 nm around β Pic by HARPS:

 \rightarrow Doppler shift allows dynamical studies (for β Pic : two families of comets, one of them being in MMR with a massive planet and the other one being fragments of one of a few parent bodies).

 \rightarrow First « **exocomet transit** » observed by TESS on β Pictoris:

Thanks for your attention !

